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This is the �rst post in a series on extending analysis from real-valued functions to functions
valued in Banach spaces. Our �rst topic is the Bochner integral. That is, the extension of the
Lebesgue integral to functions valued in Banach spaces.

1 Three line summary

� The Bochner integral is a way of integrating functions f from a measure space to a Banach
space.

� Like the Lebesgue integral, it is �rst constructed for piecewise constant functions A and
extended continuously to the completion A.

� The completion A can be explicitly described as the space of functions with separable image
and with �nite L1 norm. This naturally leads to the de�nition of Lp spaces.

2 Notation

1. We consider a measure space (Ω,F , µ) which may not be σ-�nite, and a Banach space
(X,B(X)) where B is the Borel sigma-algebra (that is, the smallest σ-algebra on X containing
all of the open sets) of X.

2. We denote the dual space of X as X∗ and given x∗ ∈ X∗ we denote the pairing of x ∈ X and
x∗ as (x, x∗) := x∗(x).

3. Given a subset A ⊂ Ω we denote the indicator function of A as 1A.

4. Given f : Ω → R and x ∈ X we de�ne the function f ⊗ x : Ω → X by

f ⊗ x(ω) := f(ω)x.

3 Strong measurability

Our goal is to de�ne integration for functions valued in a Banach space

f : (Ω,F , µ) → ((X, ∥·∥),B(X)).

When working with measure spaces, we are, in general, not interested in what happens on sets of
measure 0. As a result, we are contented with properties of interest holding perhaps not everywhere
but almost everywhere.
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De�nition 3.1. A property is said to hold µ-almost everywhere if there exists a set N ∈ F with

µ(N) = 0 such that the property holds on Ω \N .

As anticipated, we �rst consider the class of simple functions

A =

{
n∑

k=1

1Ak
⊗ xk : xk ∈ X and Ak ∈ F with µ(AK) < ∞

}
.

We can de�ne their integral quite naturally as∫
Ω
f dµ =

∫
Ω

n∑
k=1

1Ak
⊗ xk dµ =

n∑
k=1

xkµ(Ak).

If we take equivalence classes and identify functions that are equal µ almost everywhere, we can
de�ne the norm

∥f∥A :=

∫
Ω
∥f∥ dµ, ∀f ∈ A.

A veri�cation shows that integration is linear and for all f ∈ A.∥∥∥∥∫
Ω
f dµ

∥∥∥∥ ≤
∫
Ω
∥f∥ dµ = ∥f∥A (1)

That is, integration is a linear and continuous map∫
Ω
·dµ : (A, ∥·∥A) → (X, ∥·∥).

Since X is a complete, we can linearly extend integration in a unique way to the completion A of
(A, ∥·∥A). The space A, which can be built through taking limits of simple functions, is thus the
space of functions that we can integrate. Our next step is to �gure out what this is.

De�nition 3.2. We say a function f : (Ω,F) → (X,B(X)) is µ-strongly measurable if there exists

a sequence of simple functions fn such that

f = lim
n→∞

fn µ-almost everywhere.

Since the simple fn are separately valued (that is, fN (Ω) ⊂ X is separable), f will also be (almost
everywhere) separably valued. As a result we will always end up working with separable Banach
spaces. The following properties are of use

Exercise 1. Let X be a separable Banach space with dual X∗ , show that

1. There exists {x∗n}
∞
n=1 ⊂ X∗ such that

∥x∥ = sup
n≥1

|(x, x∗n)| .

Such a sequence is called a norming sequence.

2. The Borel σ-algebra B(X) is equal to the σ-algebra generated by {x∗n}
∞
n=1, and by X∗. That

is,

B(X) = σ ({x∗n}
∞
n=1) = σ(X∗)

If X is not separable, the inclusion B(X) ⊂ σ(X∗) may fail. See [1] page 23 for a counterex-
ample.
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3. A function f : Ω → X is measurable if and only if it is weakly measurable. That is, if and
only if for all x∗ ∈ X∗ the function (f, x∗) : Ω → R is measurable.

4. The dual X∗ with the weak-∗ topology (the topology generated by X viewed as a subset of
X∗∗) is separable .

Hint. 1. Consider a countable dense subset {xn}∞n=1 of X. By the Hahn-Banach theorem, there
exists x∗n ∈ X∗ such that

(xn, x
∗
n) = ∥xn∥ , ∥x∗n∥ = 1.

Show that x∗n satis�es the desired property.

2. The inclusion σ(X∗) ⊂ σ ({x∗n}
∞
n=1) always holds as the preimage by a continuous function of

an open set is open. To show the reverse inclusion, prove that every open ball in X can be
written as a countable union of balls Br(x) := {y ∈ X : ∥x− y∥ ≤ r}. Now show that

Br(x) =

{
x ∈ X : sup

n≥1
(x, x∗n) ≤ r

}
⊂ σ ({x∗n}

∞
n=1) .

To show that the inclusion B(X) ⊂ σ(X∗) may fail for

3. The implication always holds. Use the previous point to prove that weakly measurable func-
tions in separable Banach spaces are measurable.

4. By the Hahn Banach theorem, a linear subspace Y ⊂ X∗ is dense if and only if it separates
points. That is, for all x ∈ X there exists x∗ ∈ Y such that x∗(x) ̸= 0. Use this to show that
the space spanned by {x∗n}

∞
n=1 is dense in X∗.

The following characterizes the space of strongly measurable functions

Theorem 3.3 (Pettis measurability theorem). A function f : Ω → X is µ-strongly measurable if

and only if f is µ-almost everywhere separately valued and (f, x∗) is µ strongly measurable for all

x∗ ∈ X∗.

Proof. We �rst prove the implication. For some x
(n)
k ∈ X,A

(n)
k ∈ F ,

f = lim
n→∞

fn = lim
n→∞

n∑
k=1

1
A

(n)
k

⊗ x
(n)
k µ-almost everywhere.

As a result, f takes almost everywhere values in the separable space spanned by the countably many

x
(n)
k . To see that (f, x∗) is µ-strongly measurable we note that gn := (fn, x

∗) are simple functions
and

(f, x∗) = lim
n→∞

gn µ-almost everywhere.

We now prove the reverse implication. By assumption, there exists Ω1 ⊂ Ω such that µ(Ωc
1) = 0

and X1 = f(Ω1) is separable. As a result, and by point 1 of exercise 1 there exists a norming
sequence {x∗n}

∞
n=1 ⊂ X1.

Since we only need to prove limits almost everywhere, we can suppose that f is separably valued
by restricting to Ω1. Now, by assumption the functions gn := (f, x∗n) are µ-strongly measurable.
Let Kn be the support of gn and K = ∪n≥1Kn. By de�nition of strongly µ-measurable function
and since the union of countable sets is countable, K is σ-�nite. Since x∗n separate points, f is 0
outside of K, and by restricting to K we can suppose that µ is σ-�nite.
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Let {xn}∞n=1 be a countable dense subset of X1. Given n ∈ N, we de�ne φn(x) to be the
xk ∈ {xj}nj=1 which is the closest to x, and where in the case of a tie we take the one with the
smallest index j. We can now de�ne the simple functions

Fn := φn(f(x)).

The function Fn takes at most n-di�erent values x1, . . . , xn with

{Fn = xk} =

{
∥f − xk∥ = min

1≤j≤n
∥f − xj∥ < min

1≤j<k
∥f − xj∥

}
. (2)

Since (f − xk, x
∗
n) is µ-strongly measurable, we deduce that the following function is measurable

almost everywhere.

∥f − xk∥ = sup
n≥1

(f − xk, x
∗
n).

So, without loss of generality, we may suppose they are measurable by restricting once more. Then,
by (2) Fn is measurable. Since we had restricted u to be σ-�nite, we may take a partition {Ωn}∞n=1

of Ω with �nite measure. Consider fn := Fn1Ωn , we have that fn is µ simple (we need to multiply by
1Ωn so that the support of the indicators have �nite measure) and converges to f almost everywhere.

If we include x0 = 0 in the norming sequence of Theorem 3.3, we have that ∥fn − f∥ as in the
proof above is bounded by ∥f∥ almost everywhere and obtain the following corollary which will be
used later to show the density of simple functions in the integrable ones.

Corollary 3.4. Let f : Ω → X be µ-strongly measurable. Then, there exists a sequence of simple

functions fn converging to f almost everywhere and such that

∥fn − f∥ ≤ ∥f∥ , µ-almost everywhere.

Most typically, one works in the case where µ is σ-�nite (for example, if µ is the Lebesgue measure
or any probability measure) and identi�es functions that are equal almost everywhere. In this case,
the following more simple statement holds.

Theorem 3.5 (Pettis theorem for σ-�nite measures). Let (Ω, µ,F) be a σ-�nite measure space and

identify functions that are equal almost everywhere. Then f is µ-strongly measurable if and only if

f is separately valued and measurable.

Proof. Let f be µ-strongly measurable. Then, f is the limit of separately valued and measurable
functions. As a result, f is separately valued and measurable.
Suppose now that f is separately valued and measurable. Then, the same is true for f1Ωn where

{Ωn}∞n=1 is a partition of Ω with �nite measure. Moreover, these functions are strongly measurable
as the measure of Ωn is �nite (one can start from f1Ωn and form Fn as in the previous proof
converging to f1Ωn) and since they form a partition of Ω,

f = lim
n→∞

f1Ωn .

By a basic argument, the limit of µ-strongly measurable functions is µ-strongly measurable and we
conclude that f is µ-strongly measurable, as desired.
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4 Construction of the Bochner integral

Since the norm ∥·∥ is a continuous function, given a measurable function f : Ω → X, the real-valued
function ∥f∥ : Ω → R is also measurable. As a result, we can de�ne the Lebesgue integrals

∥f∥Lp(Ω→X) :=

(∫
Ω
∥f∥p dµ

)1/p

, p ∈ [1,∞). (3)

Likewise, the sets ∥f∥ > r are in the σ-algebra F and we can de�ne

∥f∥L∞(Ω→X) := inf{r > 0 : µ(∥f∥ > r) = 0}, (4)

where the in�mum is de�ned to be ∞ if the set is empty.
Knowledge of the real-valued case shows that (3) and (4) de�ne a seminorm on the spaces of

measurable function where they are �nite, and they de�ne a norm if we de�ne the equivalence
relation

f ∼ g if f = g µ-almost everywhere.

Following common practice, we will identify functions that are equal almost everywhere from now
on and make no distinction between functions and their equivalence classes. Finally, we arrive at
the following de�nition.

De�nition 4.1. Given a measure space (Ω,F , µ), a Banach space (X,B(X)) we de�ne the space

of p-integrable functions as (the equivalence classes)

Lp(Ω → X) :=
{
f : Ω → X : f is strongly measurable and ∥f∥Lp(Ω→X) < ∞

}
.

If one wishes to be explicit about the underlying measure space one can also write Lp(Ω,F , µ,X).
As in the real case, the Lp spaces are complete.

Theorem 4.2 (Fischer-Riesz). The space Lp(Ω → X) is a Banach space for all p ∈ [1,∞].

Proof. The proof follows along the lines of the real case, substituting the absolute value in R by
the norm in X as necessary. We �rst prove the case p ∈ [1,∞) Recall that a normed space is
complete if and only if every absolutely convergent series converges.That is, we need to show that
if fn ∈ Lp(Ω → X) is such that

∞∑
n=1

∥fn∥Lp(Ω→X) < ∞.

Then there exists f ∈ Lp(Ω → X) such that

f =

∞∑
n=1

fn ∈ Lp(Ω → X).

To do so, one �rst applies Minkowski's inequality for real-valued functions to show that

∞∑
n=1

∥fn∥X ∈ Lp(Ω → R).

Thus, the sum is �nite almost everywhere. Since X is complete, we have that the above sum
converges pointwise almost everywhere to some function

f(ω) :=

∞∑
n=1

fn(ω) ∈ X.
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Furthermore we have that f is strongly measurable as it is the limit of strongly measurable functions.
Finally, using Fatou's lemma for real-valued functions and the triangle inequality for norms shows
that ∥∥∥∥∥f −

N∑
n=1

fn

∥∥∥∥∥
Lp(Ω→X)

=

∥∥∥∥∥
∞∑

n=N

fn

∥∥∥∥∥
Lp(Ω→X)

≤ lim inf
M→∞

∥∥∥∥∥
M∑

n=N

fn

∥∥∥∥∥
Lp(Ω→X)

≤ lim inf
M→∞

M∑
n=N

∥fn∥Lp(Ω→X) =
∞∑

n=N

∥fn∥Lp(Ω→X)
N→∞−−−−→ 0.

Which shows convergence in Lp(Ω → X) for p ∈ [1,∞).
For the case p = ∞ consider a Cauchy sequence fn ∈ Lp(Ω → X) and write

Anm :=
{
ω ∈ Ω : ∥fn(ω)− fm(ω)∥ ≤ ∥fn − fm∥L∞(Ω→X)

}
, A :=

∞⋃
m,n=1

Anm.

By construction, Anm and thus Ac have measure zero and fn converges uniformly on A. As a result,
fn converges almost everywhere to some f ∈ L∞(Ω → X). This completes the proof.

Just as in the case of Lebesgue integrals, the proof of the completeness of Lp(Ω → X) serves to
show that every convergent sequence must have a subsequence converging almost everywhere. This
proposition is not necessary for the rest of the constructions, it's just a nice property to have in
reserve.

Proposition 4.3. Let fn → f ∈ Lp(Ω → X), then there exists a subsequence fnk
converging to f

almost everywhere.

Proof. In the proof of the above proposition, we saw that for any absolutely convergent sum con-
verges almost everywhere to its limit. Further, since fn is Cauchy, we can extract a subsequence
fnk

with ∥fnk
− fnk−1

∥ ≤ 2−k. By construction, the sequence

∞∑
k=0

fnk
− fnk−1

,

is normally convergent and converges in f . By the above discussion we conclude the proof.

Ok, so we've constructed some spaces of p-integrable functions and shown that they are complete.
You know where this is going. Next stop is density town. In the standard construction of the
Lebesgue integral, it is used that every measurable function to R can be pointwise approximated
by simple functions. One can achieve the same result for arbitrary metric spaces if the image of f
is separable.

Proposition 4.4. Every function in Lp(Ω → X) is the limit almost everywhere and in the norm

of a sequence of simple functions.

Proof. By Corollary 3.4, there exists a sequence of simple functions fn converging to f almost
everywhere and such that ∥fn − f∥ < ∥f∥ almost everywhere. By the dominated convergence
theorem for real valued functions, we have that

lim
n→∞

∥fn − f∥pLp(Ω→X) = lim
n→∞

∫
Ω
∥fn − f∥p dµ =

∫
Ω

lim
n→∞

∥fn − f∥p dµ = 0.
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As a corollary, we obtain the following

Corollary 4.5. The simple functions A are a dense subset of Lp(Ω → X).

Since L1(Ω → X) is complete, we have that the closure of A with the norm ∥·∥L1(Ω→X) is

L1(Ω → X). Furthermore, by the triangle inequality (1), integration is continuous with this norm.
This continuity allows us to extend integration to L1(Ω → X) and shows that the space of integrable
functions is L1(Ω → X).

De�nition 4.6. We de�ne the integral on L1(Ω → X) as the unique continuous extension with the

norm ∥·∥L1(Ω→X) of the integral on A. That is, given f ∈ L1(Ω → X) we de�ne∫
Ω
f dµ := lim

n→∞

∫
Ω
fn dµ.

Where fn ∈ A is any sequence such that ∥f − fn∥L1(Ω→X) → 0.

Observation 1. We could also work with the spaces

L̂p(Ω,F , µ,X) =

{
f : Ω → X :

∫
Ω
∥f∥p dµ < ∞

}
.

These spaces are once more complete, however, they do not contain simple functions as a dense
subset. As a result, given f ∈ L̂1(Ω → X) it is not possible to make sense of the expression

∫
Ω f dµ.

5 Familiar properties

Many properties of integration hold for the Bochner integral as well. For example, the following is
a result of the de�nition of the Bochner integral and a passage to the limit, as it holds for simple
functions.

Corollary 5.1. Let f ∈ L1(Ω, X) with X a Banach space, then

1.
∥∥∫

Ω f dµ
∥∥ ≤

∫
Ω ∥f∥ dµ

2. Let Y be another Banach space and L ∈ L(X,Y ). Then∫
Ω
(L ◦ f) dµ = L

(∫
Ω
f dµ

)
.

Knowledge of scalar-valued results also goes a long way; for example, we can prove the following

Exercise 2 (Fubini-Tonelli). Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be σ-�nite measure spaces and con-
sider the space Ω1 × Ω2 with the σ-algebra F1 ⊗ F2 generated by sets of the form A1 × A2 with
Ai ∈ Ωi and the unique measure µ1 ⊗ µ2 such that (µ1 ⊗ µ2)(A1 ×A2) = µ1(A1)µ2(A2). Let X
be a Banach space and f : Ω1 × Ω2 → X be strongly measurable. Then

1. The functions f(ω1, ·) and f(·, ω2) are strongly measurable.

2. If any of the following integrals is �nite∫
Ω1×Ω2

∥f∥ d(µ1 ⊗ µ2),

∫
Ω1

(∫
Ω2

∥f∥ dµ2

)
dµ1,

∫
Ω2

(∫
Ω1

∥f∥ dµ1

)
dµ2. (5)

Then all of the integrals in (5) are equal, and∫
Ω1×Ω2

f d(µ1 × µ2) =

∫
Ω1

(∫
Ω2

f dµ2

)
dµ1 =

∫
Ω2

(∫
Ω1

f dµ1

)
dµ2. (6)
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Hint. 1. From Fubini's theorem, we know that the sections f(ω1, ·) and f(·, ω2) are measurable.
Since f is separately valued so are f(ω1, ·) and f(·, ω2). As a result, by Theorem 3.5, they are
strongly measurable.

2. By Fubini-Tonelli's theorem we know that if any of the integrals in (5) is �nite, then all of
them are equal. By the �rst point, we conclude from the characterization of the integrable
functions (De�nitions 4.1, 4.6) that all the integrals in (6) are well de�ned, and it remains
to see they are equal. To do so, let x∗ ∈ X∗ be and then, by Fubini-Tonelli for real-valued
functions∫

Ω1×Ω2

(f, x∗) d(µ1 ⊗ µ2) =

∫
Ω1

(∫
Ω2

(f, x∗) dµ2

)
dµ1 =

∫
Ω2

(∫
Ω1

(f, x∗) dµ1

)
dµ2.

By Point 2 of Corollary 5.1 and, since we just proved that all the integrals in (6) are well
de�ned, we may pull x∗ out of the integrals. By the Hahn-Banach theorem, X∗ separates
points of X, and the proof follows.

Sometimes the following theorem is more useful when instead of using the product measure µ1⊗µ2

on X × Y , we use its completion µ1 × µ2. In this case, Fubini-Tonelli's Theorem 2 still holds. It is
only necessary to note that the sections of f are now almost always measurable (see [2] page 203
for more details).

Exercise 3 (Minkowski's integral inequality). Show that given p ∈ [1,∞) and f ∈ L1(Ω1 →
Lp(Ω2 → Y )) it holds that(∫

Ω1

∥∥∥∥∫
Ω2

f dµ2

∥∥∥∥p dµ1

)1/p

≤
∫
Ω2

(∫
Ω1

∥f∥p dµ1

)1/p

dµ2.

Hint. Apply the triangle inequality (1) with X = Lp(Ω2 → Y ).

Exercise 4 (Dominated convergence theorem). Let fn, f ∈ L1(Ω → X) be such that fn → f
almost everywhere and there exists g ∈ L1(Ω → X) such that ∥fn∥ ≤ g almost everywhere. Then∫

Ω
fn dµ →

∫
Ω
f dµ.

Hint. We have that ∥fn − f∥ ≤ 2g almost everywhere. As a result, by the dominated convergence
theorem for real-valued functions, we have that

lim
n→∞

∫
Ω
∥fn − f∥ dµ = 0.

The triangle inequality concludes the proof.

The dominated convergence theorem is a powerful tool that allows us to pass to the limit under
the integral sign. For example, it can be used to show that, under necessary conditions, if f(t, ω)
is continuous (di�erentiable) in t then so is

∫
f(t, ω) dµ(ω) (see here for a proof). These results,

together with the density of simple functions, can be used to prove the standard approximation
theorems.

Theorem 5.2 (Convolution, regularization and smooth approximation). Let p ∈ [1,∞) and con-

sider f ∈ Lp(Rd → X) and ϕ ∈ L1(Rd).
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1. Young's inequality. The convolution

f ∗ ϕ(x) :=
∫
Rd

f(x− y)ϕ(y) dy,

is well-de�ned almost everywhere and satis�es

∥f ∗ ϕ∥Lp(Rd→X) ≤ ∥f∥Lp(Rd→X) ∥ϕ∥L1(Rd) .

2. Molli�ers. De�ne ϕϵ(x) := ϵ−dϕ(x/ϵ). Then,

f ∗ ϕϵ → f in Lp(Rd → X).

3. Smoothing. If ϕ ∈ Ck
c (Rd) then f ∗ ϕϵ ∈ Ck(Rd → X) with

Dαf ∗ ϕ = f ∗ (Dαϕ), ∀ |α| ≤ k.

4. Smooth approximation. Taking ϕ ∈ C∞
c (Rd) to be any and normalizing so that

∫
ϕ dx = 1

we deduce that C∞
c (Rd) is dense in Lp(Rd → X).

Ok, that's it. This post was a bit more technical than some of the others, but you get the
picture. De�ne an integral for simple functions, and �gure out what can be approximated by simple
functions. As we saw, the extra requirement that appears over the Lebesgue case is that the function
f is separately valued and justi�es why, as we will see in future posts on SPDEs, the image of f is
often taken to be some separable Hilbert space. Until the next time!
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